Memorandum

DATE February 13, 2015

- To Housing Committee Members: Carolyn R. Davis, Chair, Scott Griggs, Vice-Chair, Monica Alonzo, Rick Callahan, Dwaine Caraway, and Philip Kingston
- SUBJECT Solar Photovoltaic System: Residential Applications

On Tuesday, February 17, 2015, you will be briefed on residential use of solar panels: Solar Photovoltaic System: Residential Applications. This presentation will be given by representatives from Axium Solar. A copy of the briefing is attached.

Please let me know if you have any questions.

Theresa O'Donnell Chief Planning Officer

c: The Honorable Mayor and Members of the City Council A. C. Gonzalez, City Manager Rosa A. Rios, City Secretary Warren M.S. Ernst, City Attorney Craig Kinton, City Auditor Daniel F. Solis, Administrative Judge Ryan S. Evans, First Assistant City Manager Eric D. Campbell, Assistant City Manager Jill A. Jordan, P. E., Assistant City Manager Mark McDaniel, Assistant City Manager Joey Zapata, Assistant City Manager Jeanne Chipperfield, Chief Financial Officer Sana Syed, Public Information Officer Elsa Cantu, Assistant to the City Manager – Mayor and Council

Solar Photovoltaic System: Residential Applications

PRESENTED TO: PRESENTER:

DATE:

City Council Housing Committee Andrew Whitehead – LEED AP, NABCEP PVI Russell Speed – LEED AP, NABCEP PVTS

February 17, 2015

AGENDA

- About Axium Solar
- Solar Photovoltaic Systems: Residential Applications
 - Installation New Construction & Retrofit
 - Solar Basics: How Solar Works
 - Design Considerations & Best Practices (Case Study)
 - Solar Energy Generation
 - Cost of Going Solar
 - Upfront & Future Costs
 - Investment & Savings
 - Tax credits & Subsidies
 - Solar ROI & Lifetime Savings
 - Environmental Benefits

ABOUT AXIUM SOLAR

- North Texas based renewable energy Engineering, Procurement, & Construction company
- Specialized in the design and construction of grid connected solar electric systems for both commercial and residential clients
- Founded out of Axium Electric, (dba Automated Controls), a low voltage, building automation subcontractor serving the commercial market for the past 26 years
- 7.3 MW of Installed Capacity

ABOUT AXIUM SOLAR

Licensing and Certification

- NABCEP Certified PV installers
- Master Electricians
- NABCEP Certified PV Technical Sales Professionals
- LEED Accredited Professionals
- Texas Small Business: NCTRCA, HUB, SCTRCA

TECHNOLOGY

SOLAR DESIGN

Considerations & Best Practices

Orientation & Pitch

- Ideal Orientation is 180 degrees due south, also SE, SW, E, W
- Ideal Slope is Site Latitude +/- 5 degrees (5:12 10:12)

Shading

• Ideally no shading between 9 am and 3 pm

Setbacks & Access rows (IFC 2012)

• 3ft on pitched roofs, 4-6 ft on flat roofs

Age, Material, & Condition of Roof

Under 10 years old preferred

Electrical Infrastructure

• 200A Service Panel on single family home preferred

SOLAR DESIGN

Case Study: 5.4 kW DC PV System (20) 270 watt solar panels (1) 5000 watt AC solar inverter Orientation = 178 degrees Slope = 27 degrees (6:12)

Considerations & Best Practices

D

SOLAR DESIGN Azimuth

This chart compares the production of a 100 kWDC PV array at different azimuth degrees, all other variables being equal.

irection	Azimuth	kWh Annual	Delta kWh from 180	% Efficiency From 180
NE	45	90,828	49,516	64.72%
Е	90	113,473	26,871	80.85%
SE	135	132,183	8,161	94.19%
S	180	140,344	0	100.00%
SW	225	133,560	6,784	95.17%
W	270	115,270	25,074	82.13%
NW	315	92,049	48,295	65.59%

SOLAR DESIGN Pitch

This chart compares the production of a 100 kWDC PV array at different tilt angles, all other variables being equal.

Tilt	kWh Annual	Delta From Latitude	% Efficiency from Latitude
0	124,700	15,644	88.85%
5	129,569	10,775	92.32%
10	133,534	6,810	95.15%
15	136,560	3,784	97.30%
20	138,726	1,618	98.85%
25	140,028	316	99.77%
30	140,477	-133	100.01%
32.9	140,344	0	100%
35	140,046	298	99.79%
40	138,750	1,594	98.86%
45	136,539	3,805	97.29%

SOLAR DESIGN Shading

Case Study: 5.4 kW DC PV System

Shading impact of mature trees measured and accounted for in estimated energy generation

SOLAR DESIGN Roof Material

Case Study: 5.4 kW DC PV System

Standing Metal Seam Roof No penetrations required to attach panels

ROOF MOUNT Comp Shingle

ROOF MOUNT Metal Rooftops

SOLAR DESIGN Setbacks

Case Study: 5.4 kW DC PV System Required Setbacks

- Project permitted prior to adoption of 2012 IFC
- Current code requires 3' setback from ridgeline & 18" from valleys

SOLAR DESIGN Energy Generation

Case Study: 5.4 kW DC PV System 5.3 MWh (5,300 kWh) in 8 months

- Average of 663 kWh/month
- Approximate savings of \$80/month at 2015 rates

SOLAR DESIGN

Energy Generation

Solar Energy Generation

Rules of Thumb

1 kW DC = 125 kWh AC / Monthly Average

5 kW DC = 625 kWh AC / Monthly Average

10 kW DC = 1250 kWh AC / Monthly Average

DESIGN & BUDGETING Roof Mounted Solar

- Budget Cost
 - Average \$3,440 per kWdc
 - Min/Max \$2,720 to \$4,800
- Estimated Production
 - 1,450 kWhac / kWdc
- Pitch
 - Parallel with the roof
- Power Density
 - 13 14 Watt / sq.ft. of roof space
- Deadload
 - 3 4 psf

SOLAR CASHFLOW

S	/stem Price Details		
System Size (kW DC)		5.4	System Soll Drice - \$2.92 per DC Watt
System Sell Price	\$	20,682.00	System Sen Price – 55.65 per DC Wall
Incentive	es received by Contractor		
Estimated 2015 Oncor PV Incentive	\$	5,131.00	Utility Incentive = \$0.95 per DC Watt
Incentiv	es received by Customer		
Est. 30% Federal Investment Tax Credit	\$	4,665.30	Eat $200/$ Eadawal Tax Cradit - 64 CCE 20
Cu	stomer Investment		Est. 30% Federal Tax Credit = \$4,665.30
TOTAL System Investment: (After estimated ITC and Utility Rebate)	\$	10,885.70	
Total Due Axium Solar	\$	15 551 00	NET System Investment = \$10,885.70
Estimated Syste Average Annual kWh Production Average Monthly Production	m Energy Production & Savings AC Energy (kWh) 7,950 663	* Energy Savings (\$) \$954.00 \$79.50	Projected Savings First Year = \$954
PV Sys System Life Utility Savings Over 25 Years	stem Payback Analysis† 2! ¢2:	5 Years	
Levelized Cost of Energy	\$ 0.064	ner kWh	Projected Savings Over 25 Vears - \$32 523
Environm	ental Conservation Savings		Frojected Savings Over 25 Tears – 552,525
Pounds (lbs) of CO2 avoided annually	12267	lbs	
Annual avoided need for additional acreage of			
trees to capture CO2	1.67	acres	

16

17

18

19

20

21

22

23

24

2029

2030

2031

2032

2033

2034

2035

2036

2037

5. Assumes a nominal utlity cost escalation rate of

7. Pricing is based on the following system type

5. Estimated annual kWh production

\$

\$

\$

\$

				Sy	/ste	em Variables								
System kW	\$/	/kW	System Cost	Utility Rebate		Income Tax on Utility Rebate	l	30% Federal Investment Tax Credit	i r N	IACRS Tax Benefit Total		Total Customer Investment Before MACRS		Total Customer Investment
5.40	\$ 3.830.	.00 \$	20,682.00 \$	5.131.00	\$	5.5	\$	4.665.30	Ś		Ś	-		\$10,885,70
				-,			Ŧ		-					
	Average Yea	arly												
KWH Cost	Escalat	lion	Discount Rate											
 \$0.1200	3.0	10%	0%											
				Estimate	ed (Cashflow Analy	ysi	S						
		G	Grid kWh Rate with			Annual Energy		MACRS	2			Investment vs		
Year #	Year		Escalation	Annual KWH Produced		Savings		Schedule	· C	umulative Savings		Savings		NPV
1	2014	\$	0.120	7,950.00	\$	954.00	\$	-	\$	954.00	\$	(9,931.70)	\$	(9,931.70)
2	2015	\$	0.124	7,910.25	\$	977.71	\$	323	\$	1,931.71	\$	(8,953.99)	\$	(8,953.99)
3	2016	\$	0.127	7,870.70	\$	1,002.00	\$	3043	\$	2,933.71	\$	(7,951.99)	\$	(7,951.99)
4	2017	\$	0.131	7,831.35	\$	1,026.90	\$	1970	\$	3,960.61	\$	(6,925.09)	\$	(6,925.09)
5	2018	\$	0.135	7,792.19	\$	1,052.42	\$	18 <u>0</u> 0	\$	5,013.03	\$	(5,872.67)	\$	(5,872.67)
6	2019	\$	0.139	7,753.23	\$	1,078.57	\$	1.4	\$	6,091.61	\$	(4,794.09)	\$	(4,794.09)
7	2020	\$	0.143	7,714.46	\$	1,105.38	\$	1. T	\$	7,196.98	\$	(3,688.72)	\$	(3,688.72)
8	2021	\$	0.148	7,675.89	\$	1,132.85	\$	070	\$	8,329.83	\$	(2,555.87)	\$	(2,555.87)
9	2022	\$	0.152	7,637.51	\$	1,161.00			\$	9,490.83	\$	(1,394.87)	\$	(1,394.87)
10	2023	\$	0.157	7,599.32	\$	1,189.85			\$	10,680.67	\$	(205.03)	\$	(205.03)
11	2024	\$	0.161	7,561.33	\$	1,219.41			\$	11,900.09	\$	1,014.39	\$	1,014.39
12	2025	\$	0.166	7,523.52	\$	1,249.72			\$	13,149.80	\$	2,264.10	\$	2,264.10
13	2026	\$	0.171	7,485.90	\$	1,280.77			\$	14,430.58	\$	3,544.88	\$	3,544.88
14	2027	\$	0.176	7,448.47	\$	1,312.60			\$	15,743.18	\$	4,857.48	\$	4,857.48
15	20.28	\$	0.182	7 411 23	\$	1 345 22			\$	17.088.39	\$	6,202,69	Ś	6,202,69

1,378.65

1,412.91

1,448.02

1,484.00

1,520.88

1,558.67

1,597.40

1,637.10

1,677.78

1 719 47

9.62%

-9.20%

Ś

5

0.064 Average cost per kWh over 25 years

18,467.04 Ś

19,879.95 \$

21,327.96 \$

22,811.96 \$

25,891.51 \$

27,488.92 \$

29,126.02

30,803.80

32,523.27

24,332.84

7,581.34 \$

8,994.25 \$

10,442.26 \$

11,926.26 \$

13,447.14 \$

15,005.81 \$

19,918.10 \$

- 5

16,603.22

18,240.32 Ś

21 637 57

7,581.34

8,994.25

10,442.26

11,926.26

13,447.14

15,005.81

16,603.22

18,240.32

19,918.10

21,637.57

7,374.17 \$

7,337.30 \$

7,300.62 \$

7,264.11 \$

7,227.79 \$

7,191.65 \$

7,155.70 \$

7,119.92 \$

7,084.32 \$

Ś

3.0%

7,950

Roof Mount

7,048.90

SOLAR CASHFLOW

TOTAL INVESTMENT = \$10,885.70

Current Effective Utility Rate = \$0.12/kWh Assumed Rate of Escalation = 3% Annually

PV System ROI = 11 Years

Minimum System Life = 25 Years
Projected Savings Over 25 Years = \$32,523.27

	NPV		\$21,637.57
Assumptions / Clarifications			
 A electric utility rebate of (per DC kW) 	\$	5,131.00	
Assumes a marginal tax rate of		30%	
Assumes a blended utility rate of	\$	0.120	
Assumes a nominal discount rate of		0%	

IRR - Investment Life

IRR - 7 years

Cost of Energy

0.187

0.193

0.198

0.204

0.210

0.217

0.223

0.230

0.237

0 244

SOLAR CASHFLOW

Cost of Ownership & Maintenance

Inverter should be serviced at or around Year 15 Estimated cost \$500 - \$1000

-

Cleaning with water (no cleaning agents should be used) is recommended during prolonged periods with no rainfall

DESIGN & BUDGETING

Incentives

Utility Incentives (Avg ~\$1.00/Wdc)

- IOUs: Oncor & AEP
 - Oncor ~\$1.00/kWdc
- Municipal: CPS Energy, Austin Energy, El Paso Electric, Denton Municipal
- Cooperatives: Coserv, TVEC, GVEC, Perdernales

Federal Investment Tax Credit

• 30% Federal Tax Credit expires 12/31/2016

THANK YOU